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SUMMARY 

This report deals with the problem of controlling the vibrations of large space 

structures by the use of distributed sensors and actuators. It specifically 

addresses the synthesis and implementation of Low-Authority Control (LAC) 

systems which arise when the above structural vibration controllers introduce 

only a moderate amount of damping (10 to 25 percent) in the structure. 

The LAC gain synthesis is achieved by an exact algebraic optimization of a 

weighted quadratic cost function based on the fundamental LAC root-shift 

prediction formula. The cost function is the sum of two disparate design 

objectives, making its optimization a special case of a pareto-optimal design [ 11. 

To broaden the applicability of the LAC synthesis procedure, the LAC theory 

has been generalized to arbitrary linear time-invariant systems which include 

general filter equations. The ensuing LAC synthesis procedure is then 

applicable to structures which already have some natural damping or some 

embedded attitude or structural control systems. In turn, this makes it possible 

to formulate and implement a sequential LAC synthesis procedure in which the 

perturbation method is applied sequentially in a manner analogous to the Newton- 

Raphson method. In this sequential procedure, the small amount of control 

synthesized at each step is embedded in the total dynamics, and the total 

system complex eigenvectors are recomputed for the next step. 

The robustness of LAC active damping systems is examined and analyzed for 

realistic (finite-bandwidth) actuation systems. The stability characteristics of 

idealized and increasingly more realistic l’structure-with-actuatorslV models is 

analyzed, leading to the fundamental LAC Stability Theorem for already damped 

structures equipped with both (finite-bandwidth) active and parallel-mounted 

passive actuators. 



The LAC synthesis procedure is applied to the design of LAC controllers for 

vibration control of simply-supported rectangular plates for which frequencies 

and mode shapes are given analytically. Two aspect ratios are considered: 

(1) a 3:l ratio plate, for which it is shown that at least 10 percent damping 

can be achieved in the first five modes with only three colocated sensor /actuator 

pairs,, and (2) a J5/3:1 ratio plate, for which a similar objective is met with 

five sensor/actuator pairs. The special difficulty encountered for the second 

plate is the double-root frequencies of the fourth and fifth modes, leading to 

eigenvector indeterminacy. It is shown how the LAC sequential synthesis 

resolves that difficulty. 

A newly conceived linear actuation device, the pivoted proof-mass (PPM) damper, 

is described and analyzed. It consists of a flexure-pivoted mass (proof-mass) 

driven electrodynamically in an ac-coupled fashion, dissipating structural 

energy through electrical network heat losses. Detailed scaling laws are pre- 

sented for feasibility of extrapolation to large space structures. 

2 
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INTRODUCTION AND OVERVIEW 

In an earlier companion study [2], a general theory was developed for a class 

of control systems called Low-Authority Control (LAC) systems. When applied 

to structures, these are structural vibration control systems consisting of 

distributed sensors and actuators with limited damping authority, i.e., the 

control system is allowed to modify only moderately the natural modes and 

frequencies of the structure. This basic assumption, combined with Jacobi’s 

root perturbation formula, leads to a fundamental LAC formula for predicting 

algebraically the root shifts produced by introducing an LAC control system. 

Specifically, for an undamped, open-loop structure, the predicted root shift 

dAn is given by the quadratic form 

a,r 

where the coefficient matrix Dar is a matrix of (damping) gains, and Qm, Qrn 

denote, respectively, the values of the n 
th mode shape at actuator station a and 

sensor station r. 
Formula (i) may also be looked upon as (a set of) equations for the unknown 

gains Dar if the d& are considered to be known (desired) root shifts or, 

equivalently, desired modal dampings. While an exact “inversion” of (i) does 

not generally exist, least-squares type solutions can be devised to determine 

the actuator control gains Dar necessary to produce the required modal damping 

ratios. This determination of the gains is the synthesis of LAC systems, and is 

the basic problem addressed in the present study. In order to make such an 

LAC synthesis as useful as possible for practical application to large space struc- 

tures, the LAC “scenario” has been generalized to arbitrary linear time-invariant 

systems of the form given in Eq. cl), p. 13, which, in this application , 

corresponds to already damped (controlled) structures equipped with 

distributed actuator /sensor systems, and for which the basic plant ASO 

3 



includes filter equations which may be used to model either sensor dynamics, 

actuator dynamics, state estimators, or any combination of them. In this most 

general case, the analog of formula (i) is the bilinear form 

dhn = - ; 1 Darn Q; rn QR 

a,r 

(3 

where the terms Darn = Dar(n) now depend on the mode number n and are 
A R 

generally complex, and where Qan , Qrn are, respectively, the a 
th and rth com- 

A 
ponents of generalized actuator and sensor mode shapes Qn and QE. 

When the eigenvalues of the filter become large compared to those of the 

structure, it can be shown that the terms Darn become independent of n, and 

(ii) then reduces to 

dAn = - ; Dar Q,“, QFn 
c 
a,r 

(iii) 

which is the most useful formula to use when sensor, actuator, or filter dynamics 

can be ignored or are already embedded in the system. Formula (iii) applies to 

already damped structures and is the basis for the general LAC synthesis pro- 

cedure (LACSYS) and its iterative version (sequential LACSYS) discussed in 

the first chapter of this study. 

The synthesis procedure is based on optimization of a weighted quadratic cost 

function related to (iii) , and, in its implementation, is qualitatively similar to 

the classical optimal control gain synthesis procedures where a “dialogue” between 

the user and the free parameters of the system (in this case the weights in the 

cost function and the desired target modal damping ratios) is necessary to ensure 

that the control objectives are met. Even though synthesis of the control gains 

(for each set of specified weigh.ts and desired dampings) is achieved by exact 

linear algebraic processes, the resultant root shifts will only approximate the 

4 



desired ones because of the approximations inherent to the perturbation method 

employed. To improve the accuracy of the process, the perturbation method is 

applied sequentially in a manner analogous to the Newton-Raphson method. At 

each step, the small amount of damping due to the synthesized gains is “embedded” 

in the total dynamics, and the total system (complex) eigenvectors are recomputed. 

Because the synthesis procedure is applicable to already damped systems, it 

can indeed proceed in small steps such that the eigenvector shifts corresponding 

to the incremental damping added at each step remain small. This is particularly 

useful for the case of multiple roots for which the corresponding eigenvector 

indeterminacy produces large eigenvector shifts when damping is introduced. 

The second chapter deals systematically with the robustness of LAC active 

dampers. Robustness is that quality of a controller of remaining stable in 

the presence of parameter variations in the structure and/or control system 

parameters. For example, a stability condition independent of mode shapes and 

frequencies, such as the negativity of all root shifts in the fundamental LAC 

formula (i) for the case of colocation (a = r) , is an example of robustness 

when idealized (i.e. , infinite bandwidth) actuators and sensors are used. 

The generalized LAC theory developed in the first chapter makes it possible 

then to examine various stability characteristics of idealized and increasingly 

more realistic (finite-bandwidth) systems, starting from ideal dampers in un- 

damped and damped structures, actual active or actual passive dampers in 

undamped and damped structures, to the final case of both actual active and 

passive dampers in damped structures. The different cases considered lead 

to the final Stability Theorem for LAC active dampers in the presence of both 

natural structural damping and parallel-mounted, device-implemented passive 

damping. 

T.he third chapter is devoted entirely to an application of the LAC theory in 

order to illustrate the LAC synthesis procedure. To this end, the structural 

model used is that of a simply-supported rectangular plate. For this model, 

the availability of analytic expressions for its frequencies and mode shapes 



alleviates the need for finite-element models and their attendant numerical data- 

processing pitfalls. The 3:l aspect ratio plate is treated first, and it is shown 

how three actuator/sensor pairs can easily produce (at least 10 percent damping 

in each of the first five modes. The m: 1 aspect ratio plate is treated next 

its characteristic feature being that its fourth and fifth modes correspond to a 

double-root. The sequential LAC synthesis procedure is applied again in this 

case and a complete tabulation is given for the desired dampings, modal weights, 

and cumulative LAC gains occurring at each step. For this plate, 5 actuator/ 

sensor pairs are used to produce (at least) 10 percent damping in each of the 

first five modes. 

The fourth and final chapter deals with the mechanization of LAC systems, and 

focuses in particular on the proof-mass actuator as the device closest to the 

linear analog of the gyrodamper studied previously in [l] . Proof-mass actuators 

operate by the principle of inertial reaction: they apply a force to a small mass 

(proof-mass) and the dIAlember reaction force is transmitted back to the struc- 

ture. While this concept is quite straightforward, its practical implementation 

leads to numerous mechanical difficulties (e.g. , friction, suspension stiffness, 

nonlinearities , etc. ) . 

Rather than attempting to model these various pathologies (which most often are 

not even reproducible in a systematic way), the approach was taken to place 

a control system around the actuator itself in order to force it to behave in the 

desired linear manner. Furthermore, a much cleaner mechanical design was 

obtained by approximating linear motions via a small-angle pivoting device, the 

pivoted proof-mass (PPM) actuator. An electrodynamically driven prototype 

was built and is described in this chapter, and detailed scaling laws are pre- 

sented for feasibility of extrapolation to large space structures. 
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LOW-AUTHORITY CONTROL (LAC) FOR STRUCTURES 

Generalized Low Authority Control (LAC) Theory 

The LAC theory originally developed for uncontrolled and undamped structures 

Refs. [ 21 and [ 31. may be generalized to any linear time-invariant system of the form: 

i i = FX + Gu = FX + Gu 

Y Y = HX = HX 
. . 
Z Z = AZ +By = AZ +By 

u = cz u = cz 

(1) 

where X is the state vector [q q] T (9: modal amplitudes), u the control 

vector, y the measurement vector, z the filter state vector, and F, G, H , 

A, B, and C are constant coefficient matrices. In this formulation, the z 

equation (filter) may be used to model either sensor dynamics (in which case 

z is the actual sensor output), actuator dynamics (in which case z is the 

actual force/torque output), any type of linear filtering including state estimators 

(in which case z is an estimate of the state X) , or any combination of the above. 

There are two reasons for extending the LAC theory to these more general 

systems : 

(1) The introduction of the general matrices F and G (representing 

the dynamics of the system) allows the handling of structures which 

already have some natural damping or some embedded attitude or 

structural control systems. As will be seen subsequently, such 

generalization of LAC will make it possible to develop a sequential 

algorithm for the control synthesis. 

(2) The introduction of a “filterf equation provides a convenient way to 

model sensor or actuator dynamics or controller roll-off, and has led 

to a very important result concerning the stability of real-life active 

LAC dampers. 

13 



It will be shown that when the general LAC formulas are applied to undamped, 

open-loop structures, they reduce to the simpler forms obtained directly in previous 

studies (Refs. [l] and 121). 

In order to apply the perturbation theory, the matrix C (or B) in (1) is 

assumed to be ‘lsmallll in some sense, so that the shift in the n th root of the open- 

loop system will be (shown to be) given by 

Darn @tn e;R’ 

a,r 
(2) 

where D am is the 
th 

(a,r) element of the matrix 

Dn 
E c (A - x,1)-’ B (3) 

A R 
and qan and grn 

th are respectively the a and rth components of the generalized 

actuator and sensor mode-shape vectors given by 

A 
en = GT Ln 

qR= HR n n 

(4) 

(5) 

where Ln and Rn are, respectively, the left and right eigenvectors of F 

corresponding to the n th root hi., of F. 

Since eigenvectors are only defined to within a (complex) scalar multiplicative 

constant, defintions (4) and (5) depend upon the choice of separate normalizations 

for L n and Rn. However, Eq. (2) is valid for g normalization of these vectors 

as long as, together, they satisfy the condition Li Rn = 2. This particular choice 

is made so that Eq. (2) be formally compatible with Eq. (16) of Ref. [ 21 and 

Eq. (27) of Ref. 131. 

14 



th The indices a,r in Eq. (2) refer, respectively, to the a input ua controlling 
th the system of actuators and the r measurement y, of the system of sensors. * 

In simple cases, the indices a and r may be directly associated with (respectively) 

single-degree-of-freedom actuators and sensors. In more general cases, however, 

a single input ua may drive several actuators, and/or a single measurement y, 

may be a linear combination of several sensor outputs. 

The derivation of Eq. (2) proceeds from first rewriting Eq. (1) as the single 

matrix equation 

. 

.X F IGC X 
I [I[ I[ = ---- 

Z BH:A z 

and considering the open-loop (unperturbed) matrix 

and the perturbation 

(6) 

(8) 

In order to apply Jacobi’s formula (Refs. I 11 or I 21 , Eq. ( 5)) the right and left 

eigenvectors Rn and r, of d are needed. As can be easily verified, 

*The suffix “s” for sensor is not- used in order to. avoid confusion with the common 
usage of s in Laplace transforms. 
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these are 

Rn = -?$- [ 1 n 

1 = _L_,- 
n [ 1 0 

where 

RX = - (A - AnI)-’ BHR, 

Jacobi’s formula is then written as 

dhn = 

or 

dh, = - L; GC (A - AnI)-’ BH Rn 

(9) 

(10) 

(11) 

(12) 

(13) 

which leads to Eq. (2) when the definitions (3)) (4), and (5) are used. 

It is interesting now to apply Eq. (2) to an undamped, uncontrolled structure, 

for the case where 

(i) Sensors and actuators are physically colocated* 

(ii) Sensors and actuators are consistent, i.e., are of corresponding 

types : translation /force, rotation /torque 

(iii) Sensors measure rates 

*This does not necessarily require that the sensor-to-actuator feedback is also 
colocated. 

16 



In that case, we have 

H = [*I O] 

GT ' I 
(14) 

= [@I O] 

where 9 is the matrix of (real) structural mode shapes en. In addition, if we 

normalize the eigenvectors Ln and R n so that (compare to Eq. (11) of 

Ref. [2.]) 

Rn = [O O...O 1 O...O i 0 O...O...l/iwn O...OIT 

Ln = [0 O...O 1 O...O : 0 O...O...iwn O...OIT 1 

(for which Li Rn = 2, as required), then Eqs. (4) and (5) reduce to 

9 A =(!I 
an an 

8 
R 
rn = 'rn 

I 

(15) 

(16) 

SO that Eq. (2) becomes the quadratic form 

an "= - i 2 Darn 'an 'rn 
a,r 

(17) 

The above formula is very similar to Eq. (16) of Ref. [l], but the filter 

[third equation in Eq. (l)] introduces two main differences: 

(1) The coefficients Darn =Dar(n) now depend upon the mode number n 

(2) They are now complex quantities so that, in general, the dh's are also 

complex, i.e., first-order shift in frequencies may be obtained along 

with damping. 
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When the eigenvalues of the filter (i.e., the eigenvalues of A) become large 

compared to those of the structure, Eq. (3) shows that Darn becomes independent 

of n and thus Eq. (17) converges to the old Eq. (16) of Ref. [ l] and corresponds 

to the reduced equations 

Dynamics: X = FX + Gu 1 

Sensors : y = HX 

Controls : u = -Dy J 

The above equations, along with definitions (4) and (5) for 

and sensor modes, and the revised Eq. (1’7) for large filter 

filter bandwidth) , i . e. , 

dhn= -; DareAeR 
c 
a,r 

an rn 

are a convenient set to use when sensor, actuator, or filter 

ignored or are already embedded in the system. Indeed, in 

using the definition (6) ford, Eq. (1) can be rewritten as 

Y = [o : 11 x 

[I 

. . . 

Z 

u = cy 

(1% 

generalized actuator 

eigenvalues (large 

(19) 

dynamics can be 

this latter case, 

(20) 

which has the same form as Eq. (18). Equations ( 18) and (19) are the basis for 

the general LAC synthesis (LACSYS) procedure and its iterative verson (sequential 

LACSYS) , which are discussed in the next section. 
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Low Authority Control Synthesis (LACSYS) * _ .= ._.~~_ 

Equation (19) of the previous section is the basic LAC prediction formula for 

the root shifts (hence closed-loop damping) produced by sufficiently llsmalllf con- 

trol (damping) gains Dar. To synthesize the gains Da, let (dh,) denote 

the predicted root shifts given by the above formula, i.e., 
P 

WA,) 
P 

= - + 1 Da q’~“, SFn 
a,r 

= function (Dar’s) I 

(19a) 

and let (dAn)D (given numbers) denote the desired root shifts imposed by the 

LAC controller design. Then the gains Dar are chosen so as to minimize the 

weighted quadratic cost function 

‘d”Jp D; (20) 

in which the modal weights Wn help specify pole locations, and the term a r ar IIf 

improves robustness** of the controller, as will be shown later. Since the cbst 

function J(D) is quadratic in (dh ) 
np 

and hence, because of Eq. (19a), also 

quadratic in the elements of D, the gains can be obtained algebraically by 

solving the linear equations 

” aJ(D) = o” 
aD 

for (the elements of) D . 

(21) 

*The material in this section is a continuation and elaboration of the short section 
on Damper Design and System Robustness appearing on p. 21 of Ref. [ 11. 

**Rob-essis that quality of a controller of remaining stable in the presence of 
parameter variations in the structure and/or control system parameters. For 
instance, a stability condition independent of mode shapes and frequencies, such 
as the negativity of all root shifts in the fundamental LAC formula, is an expression 
of robustness. 
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To carry out this procedure, the double-indexed gain matrix Dar is relabeled 

as a singly indexed gain vector di and the multiply indexed (generalized) - 
modal coefficients e,, A ‘:n are relabeled as a coefficient matrix S .ni ’ using 

the same correspondence between the single index i and the pair of indices a ,c, 

used above. The single-index relabeling scheme (a,r) -i , for actuator and 

sensor labels which excludes those pairs for which Dar is chosen to be zero*, 

produces a correspondence between a ,r, and i such that : 

di = Dar 
ii 

1 

(22) 

Finally, let W denote a diagonal weighting matrix whose diagonal elements are Wn, 

and for simplicity, denote the desired root shifts (dAn), by - Cnwn, considered 

as components of a vector - (Co). 

With the above relabeling, the weighted quadratic cost 

can be rewritten as 

function in Eq. (20) 

2 

Sddi - Cnwn + c didi 

i 

(23) 

or in matrix form 

J(d) = [Sd - (G,$lT W [Sd - &41 + dTd (23a) 

From Eq. (23) we can calculate the partial derivatives aJ/i3dj (where j is an index 

having the same range as i) as follows: 

1 aJ 
Zad.= c ‘n 

1 n 

Vor instance, when colocated feedback is desired, Dar = 0 for a # r . 
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or equivalently in matrix form (I: Identity matrix) 

$ a& = (ST WS + I) d - STW (&4 (25) 

Thus, the condition a J/ad = 0 leads to the LAC gain synthesis formula 

d = (ST WS + 1)--l STW (ZU) (26) 

In general, W is a diagonal matrix. If we assume further that the weights Wn 

are all equal, W becomes a scalar matrix, say W = WI, and Eq. (26) can then be 

written as 

-1 
d = STs +; I ST (L-4 

so that 

fim d = (STS)-’ ST (hd 
W-* 

= 4 (Lb) 

(2’7) 

where S’ = (STS)-’ ST is the least squares pseudoinverse of S. This is the 

direct generalization of Eq. (18) of Ref. [?I . 

The purpose and effect of the term za r Dzr in the cost function, Eq. (20) , 

merits further clarification. Its genesis w&a the purely empirical observation that, 

for colocated feedback, when an exact inverse solution exists (i.e. , when the 

number of actuator/sensor pairs isequal to the number of modes to be controlled), 

an arbitrary specification of the desired damping ratios almost invariably leads 

to gains Daa with large magnitude and mixed signs. In other words, the result- 

ing control system removes energy from some parts of the structure while adding 

energy to other parts in order to achieve the desired (specified) modal 
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damping distribution. This situation is, of course, very undesirable for achiev- 

ing robustness because all dampings gains must be positive to ensure unoondition- 

al stability. 

It was further observed that some overall damping is always obtained by 

setting alI the gains to some positive value of much lower magnitude, even though 

the resulting modal damping distribution is then quite different from the desired 

one. It appeared, therefore, that adding a penalty cost for large gains to the 

cost function J would tend to prevent the occurrence of negative gains and thus 

ensure robustness. This tendency can be seen directly in Eq. (26) and its 

limiting form, Eq. (27) , for large weights. While, for large weights, nothing can be 

readily said concerning the sign distribution of the gains (components of the 

vector d), for small (positive) weights W such that W = WI we have 

(ST ws + 1)-l = I - wSTS + ; w2 (sTs)2 - . . . 

so that Eq. (26) reduces, to first-order in w , to 

Since, for all n, Znwn > 0, Wn > 0 and the elements of ST (i.e., 

S ni = l/2 @in ) are also positive, it follows that all the gains (components of d) 
. 

are also po&ive, and this is precisely the robustness condition which the second 

term in the cost function J in Eq. (20) or (23a) is intended to bring about in the 

LAC gain synthesis. 

Remarks : In the above synthesis, the feedback (damping) gains Dar were chosen 

to minimize the cost-function J in Eq. (20) which is the sum of two disparate design 

objectives : the magnitude of the errors between predicted and desired closed-loop 

damping, and the magnitude of the feedback gains. In this sense, an LAC system 

is a special case of a Pareto-optimal design [l] in which multiple-objective cost 

functionals are optimized : the design is Pareto-optimal if none of the multiple 
objectives can be further improved without degrading any other. While there exist 
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numerical techniques for multiple-objective optimization by linear programming 

methods using equality and inequality constraints, Ref. C41 , the exact (and relatively 

simple) algebraic solution given by Eq. (26) is, for the case of LAC systems, a far 

superior synthesis method than the more general approximation techniques. 

Sequential Low-Authority Control Synthesis Procedures 

The low-authority controller design synthesis method discussed in the previous 

section is valid for a general class of linear systems, which includes, in particular, 

structures in which damping may be present. These systems are described in 

state-space form by the matrix Eqs. (18)) which result in the closed-loop dynamics 

X = (F +GDH)X (28) 

For sufficiently ffsmallff controls (or damping) D, written now as 6D, let 

dF = G(GD)H (29) 

be considered as a perturbation of the dynamics matrix F consistent with the 

assumptions implicit in Jacobi’s formula (ef. Eqs. (4)) (5), iof Ref. [Z,] . The closed- 

loop dynamics Eq. (28) can then be written 

i = (F + dF)X (39) 

The perturbation dF of the dynamics matrix introduces root shifts dhn of the 

nth (complex) root A of F. n When the corresponding eigenvector shifts are 

small, LAC theory establishes linear relationships Eq. (19) between the dh’s and 

6D. Conversely, synthesis of the control gains SD corresponding to desired values 

of the dh’s (or 5~‘s) is also obtained by linear algebraic processes shown in 

Eq. (26) where the d’s are obtained from a single-index relabeling of the doubly 

indexed quantities Dar (now designated as small quantities 6D,,). However, 
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because of the approximations inherent to the perturbation method employed, the 

resultant root shifts will only approximate the desired ones. 

To improve the accuracy of this process, the perturbation method is applied c 
sequentially in a manner analogous to the Newton-Raphson method. At each step i, 

the small amount of control due to dDi is “embedded” in the total dynamics, and 

the total system (complex) eigenvectors are recomputed. The corresponding 

control matrix gain increment 6Di then reduces the difference between predicted 

and actual closed-loop poles. This is possible because: (1) the linearity-implied 

additivity of the process allows one to rewrite Eq. (30) as 

x = [F -I- dF1 + dF2 +...+ dFnlX (31) 

where 

d”l = G(6Di)H 

and where the corresponding final gain matrix is given by 

D = 6D1 +6D2 +...+6Dn (32) 

after an n-step iteration; and Eq. (2)) because of the applicability of the LAC 

procedure to general systems, in particular to already damped structures. A 

geometric interpretation of the sequential LACSYS procedure is shown in Fig. 1. 

The sequential procedure is particularly useful for systems in which multiple 

roots occur. For such systems, the introduction of small amounts of damping 

generally results in large eigenvector shifts for which the LAC theory is no longer 

applicable. However, once a small amount of active damping has been introduced, 

the eigenvector indeterminacy (resulting from multiple roots) is removed, and 

further iterations will then make it possible to accurately synthesize the control 
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CLOSED-LOOP SYSTEM: i = 
I 

F+dF,+dF2..,+dF, X 
I 

WHERE: dFI = G dD, H 

GAIN MATRIX IS: D = 6D, + bD2 + . . . bD,., 

PREDICTED 
/DAMPING 

\ 

CLOSED-LOOP POLE 
PREDICTIONS 

CLOSED-LOOP 

ITERATIONS CAIN MATRIX 

1 bD1 
\ 

2 6D, +- bD2 

3 bD, + 6D2 + bD3 
\ . . . . . . . . . . , . 

\ 

iw 

I OPEN-LOOP 

Fig. 1 Sequential Low-Authority Control Synthesis (LACSYS) 

gains. This method will be applied in the sequel to illustrate an LAC design for a 

simply-supported rectangular plate of aspect ratio such that double-root modes 

occur early in the sequence of modes ordered by increasing vibration frequencies. 
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ROBUSTNESS* OF LAC ACTIVE DAMPERS __-~- 

The generalized LAC theory makes it possible to examine various stability 

characteristics of idealized and incresingly more realistic systems (i.e. , systems 

with finite bandwidth). The different cases considered lead to the final Stability 

Theorem for LAC active dampers in the presence of both natural structural damping 

and implemented passive damping. 

Ideal Dampers in Undamped Structures 

This case is only mentioned for completeness, since it has been largely 

documented in the original LAC papers Refs. [ 21 and [ 31. Briefly summarized, 

for a colocated and consistent** - set of actuators and sensors using rate feed- 

back, the root shifts 

dXn = - cnwn Z - ; ‘:‘ Da @En c 
a 

(33) 

are always toward the left of the iw-axis for all the modes if all the gains Da are 

positive. This robustness result obviously assumed that both sensors and actuators 

have infinite bandwidth, and also that the structure was initially undamped. Several 

departures from this idealization occur in actual practical cases and will be examined 

next. 

*See footnote, p. 19 
**See statement (ii), p. 16 
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Ideal Damners in Dammed Structures 

Since some small amount of natural damping is usually found in any structure, 

or could have been already introduced by passive means, it is of interest to determine 

whether the addition of active dampers can still meet robustness conditions. In the 

case of an already damped structure for which Con denotes the existing small 

damping ratio of the n th mode, the dynamics matrix F in Eqs. (18) now takes the 

form (see Eq. (lo), Ref. [3]): 

F = 

with its eigenvalues given by: 

I 
I I 

.- 
(34) 

J 

and its right and left eigenvectors are given by 

Rn = O...l...O ‘t O... - ( ‘ConWn + id$/ti;. . ‘01 

Ln = O...l +iConUn *...OiO... -on I 
“/i*. . .o] 

(35) 

(36) 
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as can be verified by inspection. Note that LzRn = 2; see discussion below 

Eqs. (4) and (5). Using now Eq. (14)) the generalized mode shapes Eqs. 

(4) and (5) for consistent sensor/actuator systems are given by --- 

4 R =$a 
rn rn 

Thus, the real part of the root shift is 

&e(dhn) = - Cnun z - i 2 Dar oan qrn 

(37) 

(38) 

w 

which remains always negative for colocated systems. It is to be noted, however, 

that in this case, there is an additional first-order shift in frequency due to the 

presence of the Con term. 

Actual Passive Damoers in Undamoed Structures 

Because of the flexibility inherent in all materials , a passive damper must be 

modeled at least as an ideal damper in series with a spring, as shown in Pig. 2. * As 

a result, the force /displacement relationship, instead of being a pure rate-feedback, 

P 

f i”r”i L To e p/k 

Pig. 2 Passive Damper Model 

*Indeed, for high frequencies, the “dashpot” part is basically locked, only the 
springiness of the device remains. 
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has a transfer function of the form 

f(s) /x(s) = - ps/(l + ToS) (39) 

where p is the damping gain, and To - - p/k where k is the spring constant. 

This means that the actual device behaves like a pure spring rather than a damper 

at frequencies large compared to l/2 n’ro. In terms of control theory, the dynamics 

of such devices can be represented by the first-order lag (or first-order “roll- 

off”) l/(1 + Tos), placed at the output of the idealized device. Equivalently, 

it can be interpreted as a perfect rate-feedback system [the ps term in Eq. (39)] 

where the sensed rate has been l’filteredll by the first-order lag filter l/( 1 + ‘OS>. 

This second interpretation is convenient for applying the generalized LAC formulas 

to this example. Indeed, the total system equations in this case are 

i = 

Y = 
. 
Z = 

u = 

FX f 

HX 

1 -- 
7 
0 

-PZ 

Comparisons of Eqs. (40) with Eqs. (1) yields the corresponding Eq. (3)) 

written for pa = p: 

D 
1 - iToWn 

aan = Pa ( ) 1+ T2 cd2 
0 n - 

(40) 

(41) 

and thus, for a system of passive dampers (with colocated sensing) having the 

same time constant 7 o, we obtain from Eq. (2) 

&e(an) z -5 
pn*n c 

a 
(42) 
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which again is always negative. However, in contradistinction to the ideal damper 

case, the root shift now depends on the modal frequency mn, and the passive 

damping c np becomes very small as 7own becomes large. 

Actual Active Dampers in Undamped Structures --- 

This is the most complicated case, but also the most interesting in terms of 

practical implementation of LAC systems. There are quite a number of differences 

between actual active dampers and the passive damper model previously described. 

These stem from the usually complicated dynamics of the actuator itself (e.g. , 

nonlinearities) . However, most of these unwanted characteristics can be sup- 

pressed by various methods (e.g., servo-loops around the actuator itself, 

electronic compensators, etc.), but one characteristic always remains, namely, the 

finiteness of the bandwidth. While it is reasonable to as&me, for the purely 

passive damper, that the response f(s) /x(s) for ali practical purposes is not 

zero at very high frequency, the same assumption cannot hold in the active case 

where it is necessary to introduce, at the very least, another %oll-ofP1 filter 

in the model. 

The frequency response of such active systems will be described by the trans- 

fer function shown in Fig. 3: 

f(s)‘X(S) = (1 + 71:; (1 + T2S) cc > 0) (43) 

where 7 l- < r2 and where c is the active control gain. For frequencies smaller 

than 112 r T1, the system behaves like a damper, then more like a spring, and 

a final roll-off occurs after 1/27r 72 with the response going to zero with a -1 slope, 

as shown in Fig. 3. Unfortunately, this last roll-off may introduce enough phase 

shift to create instabilities if there are modes present in the roll-off region. 

This problem can be treated by introducing a filter, as in the previous case. 
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CONTROLLER 
BANDWIDTH 1 

dB a 
PASSIVE 

----- 

llr, l/T2 l/To log w 

Fig. 3 Frequency Response of Active and Passive Dampers (Bode Plot) 

This time the filter and control eauations are 

(44) 

and application of Eq. (3) yields a result analogous to Eq. (42) for a system of 

identical active dampers (ca = c) with colocated sensing 

b(e(dh,) 3, - Zen an s - 
1 - ‘1 r2 U; 

1 +T2W2 
> 

c 
(45) 

2n a 

This last expression for the active damping ton exhibits the frequency-dependent 
term 2 

- Tl T2 Wn 
> 

which changes sign for o 2 
n 

> 11 r1 T2. Thus, if there are any 

modal frequencies beyond 2 n/J 7 T 1 2’ the corresponding modes will always be 

destabilized. 

This very disquieting result appears to put an end to any thought of achieving 

robustness or even stability in active damping of structures. But, however hopeless 

it may seem, it is not really serious because nature and engineering ingenuity come 
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to help in two ways. First, the above result is valid only for undamped structures, 

and will undoubtedly change if natural damping is taken into account. Second, as 

is graphically suggested by the curves of Fig. 3, a combined use of active and 

passive damping in the actuator itself could prevent this instability. * 

Actual Active and Actual Passive Dampers in Damped Structures 

This is the most general case, where a real structure, i.e. , one which has 

some small amount of natural damping, is controlled by a feedback loop whose 

transfer function is of the type (c > o, p > o) : 

f(s) /x(s) = (1 + 71:; (1 + T2s) + l”+“,, (46) 

where c and p are, respectively, the active (controlled) and passive gains of 

the damping actuator. For instance, c can be implemented via some electro- 

dynamic motor while the p may be realized by inherent back e.m. f. damping 

(produced by a low impedance power amplifier) or by an actual passive device 

mounted in parallel with the actuator. The time constants T:~ and ~~ are chosen 

to roll-off the active compensation well before additionalepoles due to actuator 

and amplifier dynamics are encountered. 

The total real part of the root shift d?e( dAn) = - 5, wn can now be obtained by 

summing up the contributions in the previous cases. For instance, assuming there 

are a number of similar actuators, with identical active and passive gains ca = c 

pa =p , and with colocated sensing, we have :** 

* This solution was originally proposed in 1978 by J. N . Aubrun and M. G. Lyons 
on the basis of root loci considerations. The ensuing stability theorem is due to 
Aubrun. 

**The case of nonsimilar actuators is conceptually straightforward, but computa- 
tionally quite involved since, for that case, ‘i (i = 0, 1, 2) must be replacea by 

‘ia (actuator-dependent) and the corresponding terms can no longer be pulled 
out of the summation Za in Eqs. (42) and (45). 
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where 

(47a) 

= 2concd*+ 
1 

1 +rp2w2 
0 n 

and c!’ - 
c 

= c c 
s 2 lcnWn 

a a 

(47b) 

(48) 

The question now arises: does there exist a relation between the parameters 

To, Tl, T2, con, p, and c such that, when satisfied, ‘the RHS of Eq. (47) is always 

positive for any W n? The answer is in the affirmative, and is given by an inequality 

which places an upper bound Rmax on the ratio R of the active/passive LAC 

damping ratios c’/ [p’ + 2 c on wn] , and this in turn puts an upper bound on the 

achievable active damping ratio 5 
C!’ 

This inequality is characterized in the 

following theorem : 

LAC Stability Theorem (Aubrun) : Unconditional stability of an LAC system is 

guaranteed if and only if, for each mode n, the active damping ratio cc, is less 

than a certain maximum gzn . This maximum active damping ratio in any of the 

modes within the bandwidth of an active LAC controller is proportional to the 

sum of the natural structural damping con and the damping fpn introduced 

by a passive damper mounted in parallel with the actuator. Specifically, 

5 cn 5 !Zzn = Rmax (bon + l. 
pn) 

where the value of the proportionality constant Rmax is given by: 
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R = max min K+2&, TlT2/~z 

where K = Tl/T2 + T2/Tl + 2 

and where l/Tl, l/72 are the poles of the active damper, and l/~~ is the pole 

of the passive damper. 

Proof: Conditions are sought under which the RHS of Eq. (47b) is positive for 

all wn (robustness condition). Using the following definitions : 

9 E T2 /T1 

90 
= To/T 1 

R = Cl 
A 

p’ + 2con Wn 1 + T2 w2 0 n >I 

X ETW 
1 n 

I 

the robustness condition can be rewritten as 

(1 + X2) (1 + q2X2> + R (1 - qX2> (1 + qi X2) > 0 

which simplifies to 

(q2 - Rqqt) X4 - [R (q - qz )- Si - l] X2 +Ri-l>O 

(4% 

(50) 

for all X. This is a quadratic (parabola) in the variable X2, and a necessary 

condition for positivity is the positivity of the coefficient of X4 

R < q/q: 

= 7 T/T2 
12 0 (51) 
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We assume this condition can always be satisfied by the controller design. 

Inequality (50) will be satisfied if either of the following two conditions holds: 

positivity of the coefficient of X2, i.e. , 

R < q + l/q 
1 - @l 

(52) 

or negativity of the discriminant of the quadratic, i.e. , 

R2- 2 
(q + l/q) (1 - qi/q)+ 2 

R+(q+1/q)2-4 <O 

(1+ &I2 
(53) 

To simplify the result, it will be assumed that qf c-c q, i.e. 2 7 o -CC TlT2. In 

other words, the bandwidth of the passive damper is assumed to be much larger 

than that of the actuator. We define now 

z - q+ l/q (54) 

and since qz/q << 1, conditions ( 52) and ( 53) become 

R< Z (5W 

Z+2-2fi<R< Z+2+2Jz+z (5W 

The left inequality in Eq. (53a) may be ignored. Indeed, from Eq. (54) and 

Eq. (49) it follows that Z = kt + Ti)/ TlT2 2 2 and hence Z + 2 - 2 JZ + 2 < Z, 

so that if the left inequality in Eq. (55) were violated, it would simply be sub- 

sumed in condition (52a). Combining then inequalities (51) and (53a), the maxi- 

mum value of R is chosen to be 

R Z + 2 + 2 dm, 7.H /ri (55) 
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Now, within the controller bandwidth, we have ~~‘7’~ C-C 1, for i = 0, 1,2. In 

this bandwidth, the robustness condition is thus achieved when 

” < Rmax (P’ + 2$$&) (56) 

since R < Rmax, and using ,Eqs. (48)) we finally obtain 

5 
cn < Rmax ($n+ ‘pn) 

as was to be shown. 

Note. In the statement of the theorem, Z + 2 is denoted by K. The expression 

K + 2 g may also be written, after some manipulation, as (1 + l/q) (1 +Jq)2. 
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LAC ACTIVE DAMPING FOR SIMPLY-SUPPORTED RECTANGULAR PLATES 

Simply-Supported (SS) Rectangular Plates 

This chapter illustrates the synthesis of LAC active damping systems which 

was discussed at length in the last two sections of the first chapter. Because 

the strategy employed in any controller synthesis process is always dependent 

upon the characteristics of the structure to be controlled (i.e. , actuator/sensor 

selection depends on controllability/observability, which in turn depends on 

structural mode shapes), it was suggested* that application of the LAC theory 

be made to simply-supported rectangular plates. The primary reason for this 

choice was that, for this class of structures and boundary conditions, there 

exist simple analytical expressions for both frequencies and mode shapes. This 

fact obviates the need for finite-element structural models and the ensuing 

numerical data processing which might obscure the controller synthesis process. 

A secondary reason for choosing simply-supported rectangular plates lies in the 

fact that, by proper choice of aspect ratio, double-roots can be made to occur 

early in the frequency-ordered sequence of modes. While there is, in fact, 

no unique eigenvector which corresponds to a double-root frequency but 

rather an eigenplane (invariant subspace of dimension 2)) plate theory provides 

in that case two linearly independent orthogonal eigenvectors which span the 

corresponding eigenplane . This makes it possible to examine the continuum of 

mode shapes corresponding to multiple roots and, if these occur early in the 

sequence of modes, to address the actuator /sensor location problem accordingly 

in a reasonably low-order model. 

Frequencies and Mode Shapes of SS Rectangular Plates 

Consider a simply-supported rectangular plate with the following parameters: 

Length : a (ml Poisson Ratio : V 

Width : b W Surface Density: P (kg/m2> 

Thickness : h 6-d Flexural Rigidity: D (N-m) 

Young’s Modulus : E (N /m2) D = Eh3/[ 12 (1 - v2)] 

*By Dr. Larry D. Pinson, NASA Langley Research Center. 
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and let one of its corners coincide with the origin of a rectangular coordinate 

system (x,y,z), as shown in Fig. 4, where a typical point of the deformed plate 

Fig. 4 Coordinates for Simply 
Supported Rectangular 
Plates 

has coordinates x,y, and z (x,y). It 

is thus assumed that the deformation 

field is one-dimensional, i. e. , all deforma- 

tions occur along the z-axis. 

It is well-known from plate vibration 

theory (e.g., Ref. [ 51) that the vibration 

frequencies of such SS-SS-SS-SS rectangu- 

lar plates are given by the doubly-indexed 

family 

W 
mn 

(m ,n: integers) 

+ r2 n2) 

where r - a/b is defined as the aspect ratio of the plate. The plate deformations 

Z mn (x,y) which satisfy the boundary conditions and correspond to these frequencies 

are given by 

Z mn (x,Y) = amn sin (mm/a) sin (nw/b) (58) 

where the amplitudes amn are determined from the initial conditions of the problem. 

The two parameter families wmn and zmn can always be linearly ordered by a 

single index i when the index pair (m ,n) is ordered as (mi ,ni> (i = 1,2. . . ) 
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according to some rule (e. g. , increasing frequencies). Using such a correspondence 

(mi,ni) -(i), we define 

w. = w 
1 m-n. 

11 
(59) 

Z. = z 
1 m-n. 

11 1 

In order that the deformation functions (or surfaces) given by Eq. (58) be mode 

shapes, proper normalization is required. In particular, we must then have 

(i = 1,2...; j = 1,2...) 

Zi(X,Y) Zj(X,Y>p dx dY = ‘ij 

Plate 
(60) 

which is equivalent to the standard normalization I7aT M9 = I” used in structures 

(see Ref. [ 61) where @ is the matrix of eigenvectors (mode shapes), M is the 

generalized mass, and I is the identity matrix. Since the functions zi are 

orthogonal, the normalization conditions of Eq. (SO) reduce to 

ba 

p ain I I sin2 (rnr z) sin2 (n7r 9> dx dy = 1 

00 

which leads to (for aII indices m ,n) 

a = 
I/- 

4 2 
mn Pab = ry 

(61) 

(62) 

40 



where M is the mass of the plate. Using the transformation 

X = x/a 

Y = y/b I 

the mode shapes for the plate can be written as: 

Z mn (X,Y) = - 
vi 

sin m7rX sin n7r.Y 

x,ye LO,11 

(63) 

(64) 

The affine transformation Eq. (63) maps the rectangular plate onto a square 

plate for any value of the aspect ratio. The surfaces zmn (X ,Y > , displayed in 

Fig. 5 for selected values of m , n thus represent (except for scale) the mode 

shapes of any rectangular plate. However, any specific ordering of the frequen- 

cies (and corresponding mode shapes zmn 

first zaspect ratio r in Eq. (57). 

) can only be obtained by specifying 

LAC Active Damping For 3: 1 Aspect Ratio Plate 

To illustrate LAC active damping for a plate for which (at least) 10 percent 

damping is required in the first five modes, with at most five colocated actuator/ 

sensor pairs, an aspect ratio of 3: 1 is chosen. The physical parameters for this 

plate are as follows : 

a = 3m 

b = lm 

h = lcm 

E = 6.9x lOlo N /m2 (aluminum) 

P = 27.6 kg/m2 for 1 cm thick 
V = l/3 

D = Eh3/[ 12 (1 - v2)] = 6.46875 x lo3 Nm 

JG = 15.3093 m2/s 

M = pab=82.8kg 
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26.72 Hz 

-=m 

48.10 Hz 

m=S,n=fl 

90.85 Hz 

m=4,n=l 

Fig. 5 Mode Shapes for Simply-Supported Rectangular Plate (3:l) 
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106.88 Hz 

9 

120.24 HZ 

m = 3, n = 2 
,/‘- 

.A 

I/- i\ 

120.24 Hz 

138.94 Hz 

Fig. 5 (Concluded) 

and its first ten modal frequencies in Eq. (57) for r2 = a2/b2 = 9 are given by 

0. = 
1 (n2/a2)JiT (mH+ 9 nf) (65) 

where the correspondence (mi , ni) - (i) is obtained as follows: 
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Table 1. FREQUENCIES FOR 3: 1 ASPECT-RATIO PLATE 

Mode No. i 

1 

2 

3 

4 

5 ---- 

6 

7 

- 8 

- 9 

10 

m. 
1 

1 

2 

3 

4 

5 -- 

1 

2 

3 

6 

4 -- 

- 
n. 

1 
- 

1 

1 

1 

1 

1 - 

2 

2 

2 

1 

2 - 

( mf+ 9 n? 
1 ) 

10 

13 

18 

25 

- - 34- - - 

37 

40 

45 

45 

52 ---_-- 

wi/Zn (HZ) 

26.7 

34.7 

48.1 

66.8 

90.8 -_---------- 

98.9 
106.9 

120.2 - 
I 

Double Roo 
120.2 - 

138.9 -_---------- 

The choice of actuator/sensor locations is based on the locations of maximum 

modal deflection amplitudes of the plate, as shown by the modal controllability 

surfaces of Fig. 6. In J. N. Aubrun’s Low Authority Control Theory, these arise 

from the fundamental root shift formula (e.g. , Eq. (16) , Ref. [ 11) for undamped 

structures. 

(66) 

where the coefficients D 
ar are the damping (control) gains, with the indices a,r 

denoting, respectively, actuator and sensor locations on the plate so that - 

@ an E zn ma, Ya> 

g z z 
rn n (X,9 Yr) 
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m=3,fl 

m=5ti 

(90.85 Hz) 

m=2,n=lh 

m=4,A 

“=‘a 

Hz I 

Fig. 6 Modal Controllability Surfaces for Simple-Supported Rectangular 
Plate (3: 1) 
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(106.88 Hz.) 

Fig. 6 

m = 3, n = 2 

/q\ 

(120.24 Hz 1 

m=4, n=A 

(138.94 Hz) 

(Concluded) 

for each vibration mode n. For a single colocated actuator/sensor (a = r), the 
2 r.h.s. of Eq. (66) becomes Daa (can> , and for a given root shift, the gain 

D aa is minimum when (oan> 2 = [z n (Xa, Ya)12 is maximum. Thus, when the 
actuator location (X Y 

2a' 2a 
) is varied continuously over the plate, the cor- 

respondence (o,) + zn (X,Y) generates a surface whose peaks represent 
optimum actuator locations for minimum gain Daa for each mode n. These 
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controllability surfaces are thus the “squares11 of the mode shapes, and are 

shown in Fig. 6. Figure 7 shows five actuators placed very close to the plate’s 

lm 

3,-j--------- 
2 1 

1 12 23 34 45 56 67 78 89 100 111 

0 ACTUATORS INITIALLY USED, THEN REMOVED. 

. ACTUATORS INITIALLY USED, THEN KEPT. 

Fig. 7 Actuator Locations on 3: 1 Aspect-Ratio SS-Plate 

centerline Y = l/2. .The choice of these actuator locations is heuristic, and 

represents a compromise between exact placement on controllability peaks and 

available grid locations on the plate when a computationally tractable mesh size is 

used for the plate, e. g. , 121 possible locations for actuator ‘stations, as shown 

in Fig. 7. In general, one may tabulate the values of (can) 2 versus a and n, 
and examine the ensuing matrix for its largest entries. In the present case, 
examination of Fig. 8 reveals directly which actuators are most (or equally most) 

efficient for the first five plate modes. 

This matrix suggests that actuators No. 2 and No. 4 may be superfluous for 
damping the first five modes and this is indeed confirmed by the numerical 

synthesis of the LAC gains obtained by Eq. (26) of the LACSYS procedure. 
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ACTUATOR NO. 

Fig. 8 Actuator Effectiveness Matrix for 3:l Aspect-Ratio Plate 

Table 2 gives results of this synthesis for all five actuators. 

Table 2 LAC SYNTHESIS FOR FIVE ACTUATORS 

LAC PREDICTED FULL EIGENANALYSIS 
Mode OPEN-LOOP LACSYS CLOSED-LOOP CLOSED-LOOP 

No. Freq. (Hz) Weights Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) 

1 26.7 7.50 26.9 11.0 27.7 10.31 

2 34.7 0.75 35.0 11.5 34.7 12.0g CONTROL 
3 48.1 7.50 48.4 10.9 48.7 11.27 DESIGN 

4 66.8 0.90 67.1 10.0 68.2 11.02 

5 90.8 0.75 91.3 10.0 88.9 11.92 I -_---- ---------~----- -_-___-_-__-___~_______ 
6 98.9 0 98.9 1.1 98.8 

7 106.9 0 106.9 1.4 106.6 

8 120.2 0 120.2 1.4 116.3 

9 120.2 0 120.2 1.4 120.2 

10 138.9 0 138.9 1.8 137.7 
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D1 = 1,830.O N-s/m 

D2 = 1.9 N-s/m 

D3 = 544.0 N-s/m (67) 

D4 = 86.1 N-s/m 

D5 = 238.0 N-s/m t 

so that za IDal = 2,700 kg/s. The gains D2 and D4 thus contribute relatively 

very little to the control effort, and removing actuators No. 2 and No. 4 yields 

the following results for the final closed-loop eigenanalysis: 

The gains obtained with the above are (let Daa f Da) : 

Table 3 CLOSED-LOOP FREQUENCXES AND DAMPING FOR 
ACTUATORS NO. 1, 3, AND 5 

with control gains 

27.49 10.51 

34.99 10.58 

48.58 12.02 

68.04 10.03 

89.07 12.05 

D1 = 1,798.0 N-s/m 

D3 = 486.0 N-s/m 

D5 = 350.0 N-s/m \ 

(6% 
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for which a measure of the control effort is ca IDaI = 2,635 kg/s. 

Remarks : (A) The desired modal dampings in (5~) of the LACSYS Eq. (26) 

used in the above synthesis procedure were 11 percent for the first five modes, 

and 0 for the remaining ones. The intent was to achieve at least 10 percent 

damping in the first five modes only, so no attempt was made to control the other 

ones. (This was already evident in the choice* of actuator /sensor locations which 

were such that modes Nos. 6, 7, 8, and 10 were essentially unobservable and - 
uncontrollable, i.e. , o an = qrn N 0 since the centerline Y = l/2 is a nodal line 

for all these modes.) This restriction to the first five modes is quite arbitrary, 

and any number of modes could have been selected providing sufficiently many 

actuators are used. Indeed, it has been previously shown (p. 21, Ref. [l]) that 

in order to specify the damping ratio of Nc structural modes, N, colocated 

sensor /actuator damping units are required. The fact that it is possible to use 

fewer than five actuators for the SS plate cannot be generalized to arbitrary 

structures; whether or not one may use fewer than Nc units in the general case 

depends on the mode shape configurations. 

(B) Modes Nos. 8 and 9 correspond to a double root for which, strictly speaking, 

there is no (unique) associated eigenvector but rather an “eigenplane” in modal 

space. That is, any (pointwise) linear combination of the surfaces z 8 (X,Y) and 

z g (X ,Y) is again a mode shape surface corresponding to the double root w8 = wg 

at 120.24 Hz, and as an example, Figs. 9(a) and 9(b) illustrate the surfaces 

z8 + zg and z8 - zg, both of which are also vibration modes at that same fre- 

quency . The special difficulty with multiple root modes is that the presence of 

an actuator on one of their controllability surface peaks cannot guarantee any kind 

of damping performance because the vibration pattern simply shifts around so that 

the controllability peak reemerges elsewhere, away from the actuator, as can be 

seen in Figs. 9(a) and 9(b). From a mathematical point of view, the LAC per- 

turbation theory no longer applies because a small root shift can produce a very 

*The five actuators were placed slightly “belowl’ the plate’s horizontal centerline, 
by a distance equal to l/10 of the plate’s width, as shown in Fig. 7. The idea 
was to create a very small spillover into modes Nos. 6, 7,8, and 10 without any 
attempt to control them. In practice, actuator-mounting errors and resulting 
spillover will always occur. 
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- 
I 

large eigenvector shift. The method devised to deal with multiple root modes is 

a consequence of the sequential LACSYS procedure and is discussed next. 

z = l/2 I sin(nx) sin(2ny) - sin(67nc) sin(ny) 1 z = l/2 
I 
sin(3m) sin(m) + sin(6mc) sin(ny) 1 

Fig. 9 Example of Alternate Mode Shapes Corresponding 
to Double Roots 

LAC Active Damping For &%: 1 Aspect Ratio Plate -- 

In the previous 3: 1 aspect ratio plate, modes No. 8 and 9 were double- 

root modes. The study of such modes (if they were to be included without 

omitting previous ones) would then require a relatively high-order model, e. g. , 

of order 20 for the first 10 modes. In order to avoid higher order models, a 

new aspect ratio was sought such that double roots would occur last in a five- 

mode model. Inspection of Eq. (57) shows that this can be achieved for an 

aspect ratio r = G for which we obtain the frequencies shown in Table 4. 
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Table 4. FREQUENCIES FOR m: 1 ASPECT-RATIO PLATE 

Mode No. i 

1 

2 

3 

-4 

-5 _----- 
6 

7 

8 

m. 
1 

1 

2 

1 

3 

2 -- 
3 

1 

4 

- 
n. 

1 - 

1 

1 

2 

1 

2 - - 
2 

3 

1 
- 

( m2,5n2 
i 3i > 

2.666... 

5.666... 

7.666... 

10.666... 

10.666... ,------ 

15.666... 

16.000... 

17.666... 

9/27r (Hz) 

7.125 

15.141 

20.485 

28.501 - I Double Root 
28.501 - .-----e---s--- 
41.861 

42.752 

47,205 

where the plate parameters are the same as before, except that now b = 2.324 m. 

The first three mode shapes and the corresponding modal controllability surfaces 

are shown in Fig. 10. The fourth and fifth mode shapes, given by the surfaces 

z4cLY) = 2lJii) sin (3rrX) sin (7rY) 

I 
(6% 

z5(X,Y) = 2/Z) sin (27rX) sin (27rY) 

correspond to the double root above at 28.501 Hz. These two surfaces are 

orthogonal eigenvectors corresponding to the double eigenvalue W =W 4 5. i.e., 

J-1 
z4(X,Y) z5(X,Y)pdX.dY = 0 

Unit square 

and hence any (pointwise) linear combination of these surfaces corresponds again to 

an eigenvector at the same frequency. Thus, the surface ze(X , Y) defined by 

ze(X,Y) - cost3 z4(X,Y) + sin0z5(X,Y) (70) 
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m=l,n=l 

MODE 1 MODE 2 

l=l,n=Z m 

MODE 3 

)_ Fig. 10 First Three Mode Shapes and Modal Controllability Surfaces for d5/3:1 Aspect-Ratio SS-Plate 



is also a mode shape (with the proper normalization) at that frequency. As 8 

varies, the one-parameter family of surfaces generated by Eq. (70) sweeps out 

the eigenplane corresponding to the double-root ~4 = u5. Figure 11 shows a 

sampling of the surfaces Iz,(x ,q f or 8 varying ‘between 0 and n/2 in 15 deg 

increments, and these correspond thus to modal controllability surfaces of the 

continuous family Eq. (70). The peaks of these surfaces are shown in Fig. 12 

(for the first five modes) , together with five actuator/sensor locations chosen 

for this aspect-ratio plate. (See Remarks below. ) 

The final result of synthesizing a low-authority control damping system for 

the G: 1 aspect ratio plate is given in Table 5. 

Table 5. PERFORMANCE OF LAC SYSTEM FOR 
m: 1 ASPECT-RATIO PLATE 

I 

Mode Open-Loop 
No. Freq. (Hz) 

1 

2 

3 

-4 

-5 . - - - 
6 

7 

8 

7.125 8.391 

15.141 15.184 

20.485 19.275 

28.501 26.800 

28.501 28.352 ------- ----- 
41.861 41.478 

42.752 43.197 

47.205 45.363 

(FULL EIGEB sNALYSIS) 
Closed-Loop Damping 
Freq. (Hz) (%) 

37.73 

35.14 

14.30 

10.43 

10.93 ------ 
5.03 

6.44 

6.17 

The synthesis was carried out sequentially, and the values of the weights Wn, 

desired damping ratios En, as well as the LAC-predicted (P) and actual (A) 

damping ratios occurring at each iteration of the sequential process are displayed 

in Table 6. The objective, as before, was to obtain at least 10 percent damping 

in the first five modes in a “balanced” fashion, i.e. , without imposing excessively 

high damping in any particular mode. 
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m 

Fig. 11 Continuous Family of Modal Controllability Surfaces forfi: 1 Aspect-Ratio SS-Plate 



13, 

12 

ll- 

10 

9’ 

8 

7’. 

6i 

2 5 
\/ 

cp4- 
/\ 

CP2 -cPl 

5 

41 f\ \/ I\ krl 
\/ \ \J 1 CP5 3 4’LKCP3 

3 

2 

1 
14 27 ‘49 53 66 79. 92 105 118 131 144 15’ 

0 ACTUATOR (1, . . . . 5) 

X CPi: CONTROLLABILITY PEAK 
OF MODE #i (1, . . . . 5) 

7 

Fig. 12 Actuator Locations and Modal Controllability Peaks for h/3: 1 Aspect- 
Ratio SS-Plate 

56 



Table 6 SEQUENTIAL LOW-AUTHORITY CONTROL SYNTHESIS FOR fi:l 
ASPECT-RATIO SS-PLATE 

PERCENT CLOSED-LOOP DAMPING 
(P: PREDICTED BY LAC THEORY; A: ACTUAL OBTAINED BY FULL EICENANALYSISI 

( 
1 
)pen-L‘xq 
‘requenc] 

(Hz) 

1.1 

15.1 

20.5 

28.5 

28.5 

31 

t2 

33 

c4 

65 

IV1 

'Y2 

W3 

w4 

W5 

Z6Dl 

26D2 

no3 

26D4 

E6D5 

nbde 
No. 

Iteration 1 

P A 

i.1 6.1 

1.7 4.8 

L 

1.6 4.6 

1.8 4.8 

1.8 1.3 

It-omtion : lterdtic 

P 

2.3 

3.2 

i 

0.1 

9.4 

6.4 

10 

10 

10 

10 

10 

!E 
A - 

- 

iterl - 
P 

- 

:5.8 

,l.O 

6.0 

9.0 

1.4 - 

on I - 
A 

- 

34.5 

25.2 

16.7 

10.8 

6.4 - 

lter, - 
P 

- 

13.1 

!8.3 

.6.2 

.1.4 

0.8 - 

12 

11 

ion E - 
A 

- 

43.7 

27.8 

16.3 

9.4 

12.9 - 

teratiol ” 11 - 
A 
- 

- 

teration 11 terstion 1: 

11 

, 

2 

1 

1 

, 

Iteration 4 

10 

10 

10 

10 

10 

0.5 

1 

1 

1.2 

1.2 

teration : i I 

3 

1 

1 

teration 6 

23 23 

11 

11 

11 

11 

1 

1 

1 

I 

1 

11 

11 

11 

11 

1 

1 

1 

1 

2 

3 

1 

1 

1 

,190 166 600 

317 $88 396 

,170 388 810 

106 136 114 

630 288 186 / 

teration 9 

1 

1 

I 

P 
- 

,l.S 

,0.5 

5.0 

1.8 

6.1 

10 

10 

10 

10 

10 

33 5 

5 

5 

5 

5 

1 

1 

1 

1 

1 

Desired Dampings 
S in (fw) Term 

;;j5;:&, (l) 

0 

0 

0 

0 

,090 ,180 989 

1 
-- 

389 

917 ,010 997 ,230 ,309 

,180 ,880 ,780 ,850 ,886 

452 324 202 285 348 

492 451 243 169 246 

0.5 

1 

Mod&l1 \Veights 
IV,, in LACSYS 
Formula (26) 
(Dimensionless) 

181 

95 

181 

133 

198 

i24 

395 

i44 

ios 

i92 

,090 

387 

,040 

212 

221 

954 

818 

343 

265 

Cumulative - LAC Guns (2) 
W-s/m) 

I 1) Desired clampings 5, in ( 3~) of LACSYS formula (26) have no effect when corresponding weights Wn we set to Zero. 

t?J The gain indices: mutch the actuator names (numbers) show” in Fig. 12. In that figure, a” actuator located at X,Y carries the grid label 
is located at grid point No. 30. 

( + Y -1, e.g., Actuator 81 



Remarks 

1) The sequential synthesis process was carried out for the first five modes only 

of an eight-mode model. As shown in Table 5 , the V1spilloverl’ to modes 6, 7, and 

8 produces about 5 to 6 percent damping in these modes. This spillover is a 

strong function of the relative location of actuators and controllability peaks for 

the “unmodeledl’modes. 

2) Controllability peaks represent an optimum actuator location for given modes, 

but damping in those modes will also occur for nearby ,(nonoptimum) locations 

for somewhat higher actuator gains. For example, as can be seen in Fig. 12, 

actuator No. 2 is located at CP4 (controllability peak of mode 4) and is as near 

to CP2 as the finite-mesh discretization of the plate will allow. (For this plate, 

a discretization of 12 x 12 = 144 subplates was used, with 13 x 13 = 169 grid points, 

including the simply-supported boundaries, available for actuator placement. ) 

Placing another actuator at CP2 would not only be redundant for CP4, but would 

provide excessive control on the plate’s horizontal centerline where also actuator 

No. 5 is located at CPl. 

3) For double-root modes, controllability peaks lose their significance because of 

the shifting modal pattern (Fig. 11). The choice of actuator locations shown in 

Fig. 12 came as a result of some preliminary numerical experimentation based on 

placing each of the actuators at a controllability peak. For that choice, sequential 

synthesis invariably produced very high damping ratios in mode 1 and very low 

damping in mode 5, which has a nodal line (zero controllability) passing through 

the actuator located at CP4. On the basis of these numerical observations, the 

actuators at CP2 and CP5 were relocated on each side of CP5, as shown in Fig. 12. 

With this arrangement, actuators No. 1, 2, and 3 control the double-root mode 4-5, 

with actuator No. 2 also controlling mode 2 in a slightly suboptimal fashion. 

4) The sequential synthesis process shown in Table 6 reveals that mode 5 is still 

the most difficult to control. At iteration step No. 9, 10 percent damping (at least) 

is achieved in all five modes. The next three iterations serve only to distribute 

the damping more equally between these modes, and in particular to reduce the 
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42.4 percent damping in mode 1. At this point, lack of a more specific control 

objective begins to matter because the synthesis could proceed in any of several 

ways. LAC systems are not particularly appropriate for specific (relatively high) 

modal damping requirements in selected modes, and other techniques (high- 

authority control, HAC) ought to be used. It is precisely in the context of 

such other controllers that LAC systems are useful, i.e. , they provide broadband 

damping (in many modes) to absorb the destabilizing spillover of the other mode- 

specific controllers. 

5) The sequential choices for the modal weights Wn and desired dampings cn 

at each iteration step in Table 6 reveal a process which is characteristic of all 

optimal control synthesis processes, i. e. , the heuristic adjustment of weights 

(occurring in the cost function) v-is-a-vis the control gains obtained. (For 

LACSYS , the desired dampings, in a sense, also play the role of weights .) 
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PROOF-MASS ACTUATORS 

Proof-Mass Actuator Concept - 

The application of forces to a structure in space can be achieved by three 

principal means : 

1) 

2) 

3) 

Intrastructural actuators, pushing one element of the structure against 

another (e.g., member-dampers) 

Inertial reaction actuators, which create a force on the structure by 

reaction against a separate mass element which may either be discarded, 

as in the case of jets, or kept connected to the structure, as in the so- 

called “proof-mass” actuators 

Environmental actuators (e. g. , magnetic, solar, etc. ) obtained by inter- 

action of the actuator with the environment 

Although any of these methods could theoretically be used for the control of 

structures, practical considerations will help suggest the most likely candidate for 

each application. Type 3 may be discarded first because the force levels involved 

would usually be too low. Type 1 is very straightforward and is useful in many 

cases. However, it has two important drawbacks: first, because of its intra- 

structural nature, it tends to push energy around in the structure, and second, 

in the case.of large structures, “member dampers ” for instance will have to be of 

such size that their own flexible characteristics will come into play and add to the 

complexity of the problem. As for type 2, the jet solution may not be acceptable 

for various reasons: excitation of higher modes, difficulty of implementation, 

contamination of sensitive surfaces, fuel storage, etc. 

Thus, the best actuator is a momentum exchange device. In a previous study 

Ref. [l] , the use of control-moment gyros (CMGs) was discussed and analyzed. 

These devices are capable of imparting very large torques to a structure and thereby 

absorbing significant amounts of vibrational energy. Although there does not 
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exist an (exact) linear momentum counterpart of the angular momentum storage 

devices, the “proof-mass” actuator comes closest to the linear analog of a gyro. 

The important characteristic to be remembered is that the force f applied to 

the structure is the opposite of the force acting on the mass m of the actuator, 

and thus this mass will accelerate with the acceleration - f/m. Therefore, unless 

the force is reversed, the mass will continue to travel. This seems an obvious 

point, but it is an important distinction from the CMG case, where the gimbal 

angle stays constant when no torque is generated. This means that proof-mass 

actuators cannot be used for rigid-body control; their main purpose is to control 

vibrations, since in this case they will produce a force with no DC content. In 

fact, in practical implementations, these actuators will always be AC coupled to 

remove any possible bias, and also the mass will have to be physically restrained 

by a weak spring so it would not drift. 

This being established, proof-mass actuators can apply a very significant 

amount of vibrational forces to a structure, and conversely, absorb significant 

amounts of vibrational energy with the proper feedback loops. They have the 

great advantage of easy implementation, since they are self-contained and can be 

attached almost anywhere to a structure. Their only drawback is that they are not 

currently available in space technology. 

Active Versus Passive Damping 

The distinction between active and passive damping may seem very academic 

at first. Indeed, let y be the displacement of a point in the structure, then 

local damping may be introduced by applying a force 

f = -D; 

Now, whether D is due to the viscosity of a dashpot liquid, eddy currents, or 

an actuator-electronic compensator combination, makes no difference to the result. 

For space applications, however, it is easier to use electromechanical actuators 
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than hydraulic or friction systems which are not very reliable. Also, values of 

D can be adjusted very easily in the electronics so that values may be achieved 

that are not obtainable with mechanical systems. Thus, except for these few 

points just mentioned, there does not seem to be a real issue. However, the 

situation becomes quite different when one considers how the force f is generated, 

and for proof-mass actuators it makes a difference. 

Consider the simple case depicted in Pig. 13. The actuator produces a force 

f on the structure and a reaction force -f on the mass m. The displacement of 

the structure at the actuator location is y, and the relative displacement of the 

proof-mass with respect to the structure is x. The dynamic equation of the proof- 

mass is then 

m (Z + j;) = -f . (71) 

STRUCTURE 

ELECTRODYNAMIC 

CbROoF-MAss 

Pig. 13 Proof-Mass Actuator Acting on Portion of Structure 

We will consider two cases: 

1) Passive Damping .- 

The force f is generated by viscosity, eddy currents, or other passive 

means, and may be written as 

f = D;r (72) 
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Using Eqs. (71) and (72)) the transfer function may be obtained 

f/y = - mDs2 
ms + D (73) 

Equation (73) does not exactly represent a pure rate feedback; only when s >> D/m 

is it approximately one 

fly = - Ds 

Now assume that damping needs to be introduced at some frequency w/27r . 

Letting s = iw in Eq. (72) leads to 

2 
f/y = mDw 

D+imw 

Thus, the imaginary part (i.e., the one which will actually contribute to damping) 

is 

(f/y) damping 
=I - io = -D’(D) io (74) 

The next question is : how much damping is achievable? Equation (74) shows 

that the function D’(D) vanishes both at 0 and infinity, and has a local maxi- 

mum at D =mo, where the equivalent damping gain is Dmax = l/2 m w. Since 

the equivalent feedback law around the frequency w has the form 

f = - D’ j, (75) 

the damping introduced by the passive device is limited. 
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2) Active Damping 

Can this limitation be removed by active damping? If active damping meant 

merely to replace the mechanical gain D in Eq. (72) by an electronic one, the 

answer would obviously be no. However, active damping means also that sensing 

may be done differently. In this case, it is possible to sense y directly, rather 

than the natural “sensing” of x occurring in a dashpot. 

Thus, the control law, Eq. (72)) can be replaced by 

f = -Dy - (76) 

and in this case, there is, at least theoretically, no limit on what D could be, in 

opposition to the passive case in Eq. (75). 

Linear Proof-Mass Actuators 

A first attempt to build a proof-mass actuator was made using a linear electro- 

magnetic actuator (the Ling shaker model 102) which normally is used to shake 

structures from a ground base (see Table 7 for specs). 

Table 7. LING 102 CHARACTERISTICS 

Weight: 1.1 kg 

Max. Force Output: 7 N 

Max. Travel: + 3 mm - 

This actuator consists mainly of a powerful, heavy, permanent magnet 

and a cylindrical coil free to move in the magnet gap and attached to an output 

rod, as shown in Fig. 14. A bellows-type suspension system maintains the coil 

centered, while allowing for small axial motions. Because the magnet and its 

casing are heavy, this assembly is used as the proof-mass, while the output rod 

is attached to the structure being controlled. 
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!MANENT MAGNET 

/ CASING 

~DRIVINC COIL 

-, BELLOWS 
SUSPENSION 

Fig. 14 Simplified Cross Section of Ling Shaker Model 102 

There are two problems to solve before actually using this type of actuator: 

1) The bellows suspension is quite stiff and tends to stick at low force levels, 

so that the (force output) /(current input) transfer function is nonlinear, 

both in frequency and amplitude 

2) Despite this stiffness, it is yet incapable of holding the weight of the magnet 

in the gravity field, and is especially weak in off-axis directions 

In order to solve the second problem, a cradle had to be built to hold the output 

rod in a quasi-rectilinear path (Fig. 15). This is not really good mechanically because 

the coil does not exactly translate and thus may come into contact with the magnet for 

large motions. As for the suspension stiffness and stiction, which is aggravated by 

the cradle system because of misalignments and approximate linear motions, nothing 

much could be done mechanically, short of redesigning the whole actuator and 

centering system. 

However, one interesting solution was to wash out the actuator pathologies by 

introducing a feedback loop ‘around the actuator. Ideally, the force output f should 

be a linear function of the input current. One possibility is then to measure this 

force (say by load cells) and feed it back to the actuator after comparison with the 
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u --DC Ar 
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Fig. 15 Pivoted Cradle Suspension for Ling Shaker 

input command. It turns out, however, that this method is not easy to implement 

practically. Another solution was thus developed which consists in controlling 

not the force, but the veloci. of the output. -- 

Velocity-Controlled Actuators 

In order to eliminate undesirable dynamic characteristics of the actuator, the 

velocity of the output rod of the actuator is controlled by the feedback loop shown 

in Fig. 16. 

POWER 
AMPLIFIER 

Fig. 16 Actuator Feedback Loop 
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Let m be the mass of the proof mass, k the stiffness of the suspension 

system, and x the relative displacement of the output rod. The rod is attached 

to some structure where displacement is denoted by y. Thus, the equations of 

the system, in the s-plane are 

ms2 (x + y) + kx = - f + G (vc - V> 

V = sx 

y = z(s)f 1 
(77) 

where z(s) is a transfer function characteristic of the structure. If the structure 

is very rigid, z(s) is very small in the frequency range of interest (e.g., the 

actuator mounted on a test bench). Solving Eq. (77) for v gives the transfer 

function 

k + ms2 
-1 

v/vc = 1+ 
Gs (1 + ms2 z(s)) 1 (7% 

Thus, for G large enough, the influence of m, k, and z are washed out and v 

basically follows the commanded velocity vc. The bandwidth of such systems is 

basically given by 

w 
0 

- G/m (79) 

and the minimum achievable velocity is given by 

V 
0 

= fo/G (80) 

where f o is the friction force in the actuator system. Thus linearity in both 

frequency response and amplitude is greatly improved by the velocity feedback. 

(Typical examples will be seen subsequently in, Fig. 26. ) 
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In the case of the Ling shaker, it is possible to sense the velocity by 

measuring directly the back emf of the driving coil with an impedance bridge, 

as shown in Fig. 17. The advantage of this method is that it does not require 

additional hardware. However, the adjustment of the bridge may be difficult 

to achieve because of temperature drifts, especially when the power dissipation 

is large over a period of time. 

LING SHAKER 

COMMANDED VELOCITY 
INPUT 

r-II--l 

ACTUATOR COIL 

OUTPUT ROD 

BACK EMF 
SIGNAL 

AMPLIFIERS 

/CL MEASURED VELOCITY 

Fig. 1’7 Velocity-Controlled (VC) Actuator Electronics for Ling 
Shaker Model 102 

Velooity-controlled (VC) actuators are quite different from force actuators 

and thus must be used differently. For LAC implementation, the usual control 

law in its simplest form is 

f = - D;’ (81) 

If the structural displacement y is relatively small compared to the displacement 

of the proof-mass*, then 

*This is normally the case because the structure’s generalized mass is usually 
larger than the mass of the proof-mass. 
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fg l * - mx 

and thus Eq. (81) may also be written as 

. . 
x s 

D l 

my 

> (82) 

(83) 

and integrating once leads to 

D VZ 
my + constant (84) 

This shows that the velocity of the actuator must be proportional to the 

structural displacement. Therefore, when using a VC actuator, one should 

feedback position and not rate as was the case for force actuators. This is an 

unusual, but very important point to be noted. Another way to look at it is to 

consider the electronic compensator shown in Fig. 18. 

The commanded force fc goes through a gain -l/m and is then integrated 

before going to the VC actuator. The velocity of the proof-mass is then 

v = - fc/ms and the force output is f = - msv = f . Thus the integrating 
C 

circuit has transformed the VC actuator into a force actuator. In practical 

applications, however, it is important to remember that proof-mass actuators 

must be ac ’ coupled, and thus the integration in Fig. 18 must be replaced by a 

compensation of the type s/(s + a) (s + b) , where a and b are small compared 

to the frequency of the lowest mode to be controlled. 

Pivoted Proof-Mass (PPM) Actuators 

Linear actuators are plagued by three main disadvantages: considerable 

weight, stiff guiding/suspension systems with inherent friction, and weakness 

of that system in transverse loadings. K. Silveira developed a new actuator 

concept at Lockheed in 1975 for fast mirror actuation to eliminate these pathologies. 
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Fig. 18 Electronic Compensation for Velocity-Controlled (VC) Actuators 

This concept was modified and adapted by J. Aubrun to the present pivoted 

proof-mass (PPM) actuator. In this actuator the linear motion of the proof-mass 

is approximated by a small circle of arc about a pivot point realized by a flexure, 

This type of flex-pivot has three advantages: 1) it is very strong in trans- 

verse loadings, 2) it has no stiction, and 3) it is mechanically extremely 

accurate. The actuation is obtained by a light electrodynamic motor. Figure 19a 

shows a picture of an actual PPM prototype and Fig. 19b a schematic of the 

device. Velocity feedback is used also with this type of actuator. Figure 20 

shows the open- and closed-loop transfer functions of the actuator. 
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a. Prototype of PPM Actuator 

TOP 
VIEW 

FLkXURE 
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b. PPM Actuator Schematic 

COIL 

SENSOR 

Fig. 19 Pivoted Proof-Mass (PPM) Actuator 
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10 1W 

FREQUENCY 

Fig. 20 Open- and Closed-Loop Transfer Functions of a Velocity-Controlled 
PPM Actuator (Output Velocity Versus Commanded Velocity) 

The dynamics of the PPM actuator are not as straightforward as for the 

linear type. A dynamic model of the actuator is shown in Fig. 21. 

PIVOT 

T: REACTION TORQUE ON STRUCTURE 

* I-- 
ATTACHMENT POINT TO STRUCTURE 

tf REACTION FORCE ON STRUCTURE 
ELECTRODYNAMIC FORCE 
APPLICATION POINT 

Fig. 21 PPM Actuator Dynamics Model 
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Because of the pivoting, both reaction force and torque are produced on 

the structure. Application of D’Alembert’s principle shows that 

fL = - mb (i’ cos 8 + g sin 0) 

f = 92 mb ($ cos 8 - 6 sin 6) 

T = (I + mb2)g - mbd (i cos 8 - i2 sin e) 
I 

(85) 

Since the angular displacement e is usually limited to a few degrees, the 

above equations may be conveniently linearized. The longitudinal force fL 

may be ignored so that the force and torque applied to the structure by the 

actuator are given by 

I f s mb8 

T E (I + mb2 - mbd); 

where (see Fig. 21): 

rf 
S= e 

I + mb2 

(86) 

(87) 

(88) 

Equation (87) shows that it is possible to have no torque transmitted to 

the structure by choosing the attachment point at the distance 

dO 
= (I + mb2)/mb ( 89) 

Varying d above or below this value will change the sign of the output torque 

as well as its magnitude. The mass of the PPM actuator and its CM may be 

adjusted by changing the position and mass of a lead piece situated at the distance 

a from the pivot point. 
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Let bo, mo, and IO be, respectively, the position of the CM, the mass, and 

the inertia with aspect to the pivot of the “unloadedV1 actuator, and m, the 

mass of the lead piece with which it is loaded. Then 

m = m 
0 

+m 1 

b mobo + mll 
= 

m 

I + mb2 = Io+mlJ2 

and using Eqs. (86) and (88) shows that 

I 

. 

(90) 

(91) 

PPM Scaling Laws 

We must consider two important parameters in the design and use of PPM 

actuators besides the mass /inertia properties mentioned previously : 

(1) fern = maximum electrodynamic force 

(2) em = maximum angular displacement 

Since the angular displacement 0 depends upon the frequency, optimal 

choices for the design parameters will depend upon the frequency range of 

application. From the two conditions 

I I fe s fem (92) 

(93) 
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and Eqs. (86)) (90) and (91)) two new conditions are found: 

If 1 g (1 + m,b,/ml&) ml&w2 em 

(94) 

(95) 

when w/2 r is the frequency of the output force. 

Design regions may be derived from these conditions. The quantities a/r 

and w may be chosen as main parameters and regions of possible values of f 

plotted as functions of them. Typical plots were obtained for a prototype PPM 

actuator whose characteristic parameters are shown in Table 8. 

Table 8. CHARACTERISTIC PARAMETERS OF 
PROTOTYPE PPM ACTUATOR + 

Mass Geometry Electrodynamic 

IO 
= 1.5 10m5 kgm2 

bO 
= 0.016 m 

m = 0.088 kg r = 0.021 m f 
0 em = 1N 

‘rn = 0.067 rad 

Two cases were studied, for two different design values of the proof- 

mass m : 1 0.08 and 0.16 kg, respectively. Results for design #l are shown 

in Figs. 22 and 24, and for design #2, in Figs. 2 3 and 25. Figures 22 and 2 3 

show the output force f as a function of l/r. Depending on the lever arm, 

more or less force can be obtained. The zero point (obtained for a negative 

value of 1) corresponds to the composite center of mass being at the pivot 

point. 

*Prototype actuator (design #l) delivered to Dr. G. C. Horner, Langley 
Research Center. 

76 



10 Hz 

ml = 0.080 kg 

MAXIMUM ELECTRODYNAMIC FORCE LIMIT 

MAXIMUM ANGULAR TRAVEL LIMIT 
AT GIVEN FREQUENCY 

0 2' 4 6 8 

Fig. 22 PPM Actuator Design #l - Performance Region (f, a) 
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Fig. 23 PPM Actuator Design #2 - Performance Region (f, 4) 



The fact that the curves in Figs. 22 and 23 do not go to infinity for & /r = 0 

but have a maximum is due to the inertia of the unloaded actuator which absorbs 

part of the energy going to the proof-mass ml. The straight lines represent 

the limits, at various frequencies, due to the angular travel limitation. It is 

thus seen that at a given frequency, there is an optimum value for P /r , 

corresponding to the intersection of the curve and the straight line. If this 

value of L? /r is chosen for a given frequency, then the actuator will perform 

properly at all higher frequencies. For instance, if actuator (design) #l has 

to control vibrations at or above 5 Hz, a value close to 3 is optimal for &?lr. 

In this case, design #1 will lead to the values: 

4 = 0.062 m 
1 

b = 0.038 m optimal 
for 5 Hz m = 0.168 kg 

I = 8.2 x 10S5 kgm2 I 

(96) 

The effect of increasing the mass ml is to push up the angular travel 

limit, as can be seen by comparing Figs. 22 and 23, thus allowing the actuator 

to work at lower frequencies with basically the same force output. Obviously 

the increase in mass can be traded off against an increase of 1 /r, but at 

the expense of the force level. For instance, to work efficiently at 2 Hz and 

above, actuator (design) #2 should have a value of 4 /r of about 5.3. 

Another set of curves is shown in Figs. 24 and 25 where f is plotted 

against the parameter ml em (w/27r)Z, Again the two limits (maximum electro- 

dynamic force, maximum angular travel) define a usable region which is, 

this time, a function of 1 /r. The frequency scale is also shown on the top 

of the plot. These plots show that above a certain frequency, the maximum 

force output becomes constant. The intersection of the two limits corresponds 

to the optimal frequency, for a given value of P /r. 
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Fig. 24 PPM Actuator Design #l - Performance Region (f, w) 
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The optimal lever arm (e/r) can be obtained from Eqs. (94) and (95)) i.e ., 

( 
112 

f 
Ulr),pt = 

em IO -- 
ml r ernw 2 2 m r 1 J 

(97) 

This expression, which defines the abscissa of the intersection of the curve 

defined by Eq. (94) and the straight line defined by Eq. (95)) is only valid if 

this intersection is on the right of the peak of the curve. Otherwise, the peak 

itself is the maximum value for f, in which case 1 /r is given by 

mb 
(P/r), = s 

1 

112 

1+- ml1o 
m2 b2 ) - 1 

0 0 1 (98) 

Corresponding to Eqs . (97) and (98)) the values of f are, respectively, 

given by 

f opt = I 
mb 0 0 + rml (J/r) 

opt I 
cd2 em 

fm l l f 
= Z (e/r), em 

(99) 

(100) 

As was done in a previous study (Ref. [ 11) for gyrodampers, scaling laws 

may be derived by considering geometric scaling. That is, calling L a 
characteristic length* of the system, the following scalings are assumed: 

*The parameter L is assumed to be dimensionless by letting L = 1 correspond 
to the prototype actuator (design #l) described in Table 8, p. 76. 
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m 
0 

= KmL3 

IO 
= KI L5 

r = KrL 

bO 
= KbL 

f em = Kf L2 

and let 

x = ml/m0 

Thus Eqs. (97) and (98) become 

(101a) 

(101b) 

(&/r)opt = X-1'2 Kil Km1'2 "ml'" (Kr Kf (Lu)-~ - KI em) 
112 

(102) 

U/r) m = x-l Kb -1 (103) 

J 

When Lo becomes larger and larger, (B/r)opt decreases, while (,4/r), is 

constant, and there is a critical value of Lo beyond which the optimal 

value for (J/r) is given by Eq. (103) instead of Eq. (102). Correspondingly, 

the maximum force output of the actuator will be given by Eq. (100) instead 

of Eq. (99). These last two equations may be rewritten, in terms of the 

parameters defined by Eqs. (lol), as 
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l/2 

cd2 f 
opt 

= 6’mKmKb(L~)~ + KrKmKf 

*m 
- KmKL(Lw) 2 

> 
x1’2 (Lw)3 (104) 

m-4 2 (1.05) 

Equations (102) to (105) constitute the basis for PPM actuator scaling and are 

graphed in Fig. 26 for the values of the scaling parameters in Eq. (101a) corre- 

sponding to the prototype PPM actuator with X = ml/m0 = 0.9 . These 

curves may be used, for design purposes, in the following way: Assuming that 

a value of f of the force output is required for some application at a fre- 

quency equal to w/2 r , the value of the parameter 02f is computed and 

plotted on the right vertical axis. Using either the fopt curve (if w2f is 

below the critical point) or the f, curve (if w2f is above it), one obtains 

the corresponding value of L on the horizontal axis, and hence the value 

of the geometric scaling parameter L . Then, for that value of L , one 

determines the lever arm (p/r) , again using either the (!/I’)~~~ or the 

tf /r), curve (the latter being a straight horizontal line). An example of 

the procedure will be given in the next section. 

PPM-Damped Structure Scaling Laws 

The scaling of the actuator will ultimately depend upon the structure to 

be controlled. Scaling laws may be derived simply from the rate feedback Eq. 

(76) or (81) 

f = -D;7 

Thus, the force amplitude at frequency un is 
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where yn is the vibration amplitude. According to Eq. (33)) the associated 

damping produced by one colocated actuator/sensor pair is 

$-, = ~;nDo~ n 

Thus the actuator force for achieving the required damping ratio cr., must be 

2w2 y 
n n5 fnr -.- 
$; n 

(106a) 

This relation, in conjunction with Eqs. (99) , (100) , (101) , and (102) will 

allow the sizing of the required actuators. Although it is not practical or even 

possible to define scaling laws for a general structure/actuator system, some 

insight may be gained by considering a simple structure and observing the. 

evolution of the different parameters as mass and length are changed. For that 

purpose, a free-free uniform beam damped about one axis by one PPM actuator 

is considered. The beam mode shape at the tip and its frequency are given, 

respectively, by 

(IO71 

w n = D; M;1’2 Li3j2 (EIs)1’2 
1 

where Ls and MS are, respectively, the length and mass of the structure, p n 
the root of the beam equation, and EIs the classical stiffness parameter. 
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Using Eq. (106) leads to a condition on the actuator force output of 

the form 

(108) 

The 100 m graphite-epoxy beam described in Ref. [l] p. 46 will be used here as 

an example of application of these scaling laws. Table 9 gives characteristics of 

this beam from which one obtains the quantities Ls, MS, and El,. Table 10 

gives the value of P n’ The following problem is addressed: 

Assuming that 10 percent damping is desired in the first mode of the beam, and 

that the vibration amplitude of the tip is initially equal to 1 cm, design a PPM 

actuator from the results obtained with the prototype. 

Table 9 GRAPHITE EPOXY BEAM PARAMETERS 

Length Ls = 100 m 

Outside radius r = 10.55 cm 

Wall Thickness e = 2.275 mm 

Young’s Modulus E = 3.45 10” N/m2 

Density P = 1607 kg/m3 

Mass MS = 239.7 kg 

Sectional Inertia Is = 8.125 lOA m4 

Table 10 FREE-FREE BEAM EQUATION ROOTS 

P .-n I 

1 4.7124 

2 7.8540 

3 10.9956 

4 14.1372 

5 17.2788 
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First, by applying Eq. (108), it is found that a force f- 0.7 N is 

required. Since the frequency of the first mode is 0.405 Hz, 

u2f = 4.53 

This value is far below the critical point (-4.2 x 104), shown in Fig. 26. Thus 

the set of curves shown in Fig. 27 which correspond to that lower range will be 

used.* These curves, (n/r) 
opt 

and f opt, have been parameterized with XEml/mo 

varying from 0.125 to 4. The value of 0.9 corresponds to the prototype PPM 

actuator. Using this value of X first, the value of Lw is found to be approx- 
imately 7.3, corresponding to L -2.9. The (m/r) curve shows an optimal lever 

ratio of 13. If instead, one chooses X = 4, , smaller values for L and n/r 

are obtained. These two designs are compared in Table 11, obtained from the 

graphically determined values of L and P/r and from Eqs. (101). 

Table 11 PPM ACTUATOR PARAMETERS FOR 100 m Gr-Ep BEAM 

Actuator 
Parameters 

L 

Q It- 

x =0.9 x=4 

2.9 2.3 

13.0 7.5 

r 

Q 

m 0 

ml 

m 

f em 

0.061 m 0.048 m 

0.792 m 0.362 m 

2.146 kg 1.071 kg 

1.931 kg 4.283 kg 

4.077 kg 5.354 kg 

8.41 N 5.29 N 

*Figure 27, for X = 0.9, represents the same curves (R/r)o 
andf as appear in Fig. 26, but drawn i% 
of th@&igin for vastly reduced values ofw 

a neighborhooa 
t 

f and Lw, and 
correspondingly increased values of (a/r). In addition, these 
curves in Fig. 27 are now part of one-parameter famihes 
obtained by varying the parameter %. 
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Fig. 26 PPM Actuator Design Nomograph: Force and Lever-Arm Versus Geometric Scaling Parameters 
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The performance of the system for higher modes can be obtained easily by 

Eq. (106). If it can be assumed that the modal amplitudes vary with l/2 

(this corresponds to the modal content of a static deflection), then Eq. (106) 

shows that the maximum achievable value for 5, is a constant. 

As can be seen, the second design, with X = 4, iti a bit heavier but much 

smaller in size and requires a smaller electrodynamic force. It can be shown 

that for this particular design, and at this low end of the LU range, the 

minimum weight design is obtained for x= l/2 , in which case the total mass 
of the actuator is 3.977 kg. However, with 1-2 m , the corresponding 

linear dimensions become prohibitive. 
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CONCLUSION AND RECOMMENDATION 

The analytical framework has been established for the design and gain synthesis 

of Low-Authority Control systems for large space structure vibration suppression 

and management. Design implementation of LAC systems have been illustrated 

for rectangular plates equipped with infinite-bandwidth sensing/actuation systems, 

and robustness criteria established for realistic (finite-bandwidth) actuators. 

A newly conceived electrodynamically driven actuator concept is given, together 

with an actuator control system (actuator velocity control loop) designed to 

minimize spurious mechanical effects which arise with any physical actuator 

containing some degree of structural flexibility. 

, 
The inclusion of actuator and/or sensor dynamics in these types of study can 

only be meaningful in the context of an experimental program in which 1aboratGiry 

brassboards, equipped with sensors and actuators, are used to demonstrate the 

mechanical implementation and performance of such LAC vibration control systems. 

It is recommended, therefore, that any future work in this area be strongly 

coupled to a laboratory experimental program in which the practical implementation 

issues are addressed directly. By doing so, it is hoped that a new impetus will 

be provided in the aerospace industry for the conception, design, and manu- 

facture of badly needed actuator devices for large space structure vibration 

cant rol . 
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